How Do Aerosol Properties Affect the Temporal Variation of MODIS AOD Bias in Eastern China?

نویسندگان

  • Minghui Tao
  • Zifeng Wang
  • Jinhua Tao
  • Liangfu Chen
  • Jun Wang
  • Can Hou
  • Lunche Wang
  • Xiaoguang Xu
  • Hao Zhu
چکیده

The rapid changes of aerosol sources in eastern China during recent decades could bring considerable uncertainties for satellite retrieval algorithms that assume little spatiotemporal variation in aerosol single scattering properties (such as single scattering albedo (SSA) and the size distribution for fine-mode and coarse mode aerosols) in East Asia. Here, using ground-based observations in six AERONET sites, we characterize typical aerosol optical properties (including their spatiotemporal variation) in eastern China, and evaluate their impacts on Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 aerosol retrieval bias. Both the SSA and fine-mode particle sizes increase from northern to southern China in winter, reflecting the effect of relative humidity on particle size. The SSA is ~0.95 in summer regardless of the AEROENT stations in eastern China, but decreases to 0.85 in polluted winter in northern China. The dominance of larger and highly scattering fine-mode particles in summer also leads to the weakest phase function in the backscattering direction. By focusing on the analysis of high aerosol optical depth (AOD) (>0.4) conditions, we find that the overestimation of the AOD in Dark Target (DT) retrieval is prevalent throughout the whole year, with the bias decreasing from northern China, characterized by a mixture of fine and coarse (dust) particles, to southern China, which is dominated by fine particles. In contrast, Deep Blue (DB) retrieval tends to overestimate the AOD only in fall and winter, and underestimates it in spring and summer. While the retrievals from both the DT and DB algorithms show a reasonable estimation of the fine-mode fraction of AOD, the retrieval bias cannot be attributed to the bias in the prescribed SSA alone, and is more due to the bias in the prescribed scattering phase function (or aerosol size distribution) in both algorithms. In addition, a large yearly change in aerosol single scattering properties leads to correspondingly obvious variations in the time series of MODIS AOD bias. Our results reveal that the aerosol single scattering properties in the MODIS algorithm are insufficient to describe a large variation of aerosol properties in eastern China (especially change of particle size), and can be further improved by using newer AERONET data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerosol Optical Depth Spatial and Temporal Variability Using Satellite Data Over Indian Major Cities

Introduction: The study’s main aim is to investigate the long-term variation of Aerosol Optical Depth (AOD). It also aims to show the relationship between meteorological parameters. This study evaluates long-term (2010 to 2021) special and temporal changes over major Indian regions using satellite-based data from NASA’s Terra Satellite. Materials and Methods: This study was carried out during ...

متن کامل

Latest decade’s spatial–temporal properties of aerosols over China based on Multiangle Imaging SpectroRadiometer observations

The analysis of the spatial–temporal variability and trends of aerosols over China based on∼11 years (February 2000 to December 2010) of Terra-Multiangle Imaging SpectroRadiometer (MISR) Level 3 aerosol products is the focus. The study shows that the MISR aerosol optical depth (AOD) is in good agreement with corresponding AOD from AERONET stations and suggests that MISR aerosol products have hi...

متن کامل

Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing

[1] We assess the relationship of ground-level fine particulate matter (PM2.5) concentrations for 2000–2001 measured as part of the Canadian National Air Pollution Surveillance (NAPS) network and the U.S. Air Quality System (AQS), versus remotesensed PM2.5 determined from aerosol optical depths (AOD) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imagin...

متن کامل

Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets

The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...

متن کامل

Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets

The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017